

The OPIA series optocouplers are designed for applications that use an analog output (Phototransistor or Photo Darlington) in a dual-in-line package. A wide selection of configurations are available. With typical isolation voltage of 3,750 or 5,000 Volts(RMS), these product meet typical power system isolation requirements.

Theory of operation: The LED transmitter is used to illuminate the Photosensor providing electrical isolation between two power systems while maintaining the ability to transmit information from one power system to the other. In many applications, analog signal levels may be required to be transmitted between two power systems while maintaining isolation between the power systems up to 5,000 Volts(RMS). A variety of LED and photosensor configurations are available depending on the system requirements.

The ratio Current Transfer Ratio (CTR) is determined using the output current and input current for analog photosensors. CTR ratios can range from as low as 5 to over 9,000 depending on the device.

$$
C T R=\frac{\text { Photosens } \alpha-\text { Current }}{L E D-\text { Current }}=\frac{20 \mathrm{~mA}}{10 \mathrm{~mA}} * 100=200
$$

All SMD product is shipped in tape and reel with "TR" identified on the end of the part number.
Example: OPI4N35ATRE is a 6-Pin SMD shipped in tape and reel (TR).

Applications:

- High voltage isolation
- PCBoard power system isolation
- Industrial equipment power isolation
- Medical equipment power isolation
- Office equipment

RoHS
OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

OPIA500B, OPIA4N35, OPIA4N33 OPIA2110, OPIA2210, OPIA5010, OPIA6010 SMD and SOP Packages

Package Outline Dimensions and Schematics: Top-View
Package Style B

OPIA5010

(SOP)

OPIA500

OPIA4N35 OPIA2210

Package Style A (SMD)

OPIA60X

Part Number	Pin \#						
	1	2	3	4	5	6	
OPIA500	A		K	E	C	B	
OPIA4N35	A	K		E	C	B	
OPIA5010	A	K		E	C	B	
OPIA4N33	A	K		E	C	B	
OPIA2210	A	K		E	C	B	
OPIA6010	$\mathrm{A}-\mathrm{K}$	K-A		E	C	B	
OPIA2110	A	K		E	C		

Symbol	Definition								
A	Anode	B	Base	C	Collector	E	Emitter	K	Cathode

Analog Output Devices Ordering Information					
Part Number	Isolation Voltage Max. (Vrms)	CTR Min/Typ/Max	Typ. Tr / Tf ($\mu \mathrm{s}$) $\mathrm{R}_{\mathrm{L}}=100 \mathrm{ohms}$	Package	Configuration
OPIA500B	3,750	19/-/50	LH-HL $0.8 / 0.8$ (1.9K)	5-Pin SOP	AK-KCE
OPIA4N35A	5,000	60/-/600	5/4	6-Pin SMD	AK-BCE
OPIA5010A	5,000	600 / - / 9,000	$60 / 50$	6 -Pin SMD	AK-BCE (Dar)
OPIA4N33A	5,000	500/4,000 /-	5/60	6 -Pin SMD	AK-BCE (Dar)
OPIA2210A	5,000	50/-/600	$2 / 3$	6 -Pin SMD	AK-BCE
OPIA6010A	5,000	50/-/600	2/3	6 -Pin SMD	AK, K A-BCE
OPIA2110A	5,000	40/-/400	4/3	6 -Pin SMD	AK-CE
Configuration: Definition of TermsLED Identification-Sensor Identification					
LED	A = Anode	K = Cathode	E = Emitter		
Sensor	B = Base	C = Collector		(Dar) = Photo Darlington	
Packaging	Part Number Suffix	x: TU = Ship in Tubes \quad TR = Tape and		Example: OPI4N35ATRE	

[^0]Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature	
OPIA4N35, OPIA5010, OPIA4N33	$-30^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
OPIA500	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
OPIA2210, OPIA6010, OPIA2110	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Isolation voltage (1 minute)	
OPIA6XX Series	$5,000 \mathrm{Vrms}$
OPIA500	$3,750 \mathrm{Vrms}$
Total Package Power Dissipation	200 mW
OPIA6XX Series	100 mW
OPIA500	$260^{\circ} \mathrm{C}$
Lead Soldering Temperature $\left(1 / 16^{\prime \prime}(1.6 \mathrm{~mm})\right.$ from case for 5 seconds with soldering iron $)$	

Input Diode

Continuous Forward Current	
OPIA6XX Series	50 mA
OPIA500	25 mA
Peak Forward current (1 μ s pulse width, 300 pps$)$	1 A
OPIA6XX Series	200 mA
OPIA500	
Reverse Voltage	6 V
OPIA6XX Series	5 V
OPIA500	
Power Dissipation	70 mW
OPIA6XX Series	45 mW

Output Phototransistor

Collector-Emitter Voltage	60 V
OPIA4N35, OPIA6010, OPIA2110	350 V
OPIA2210	300 V
OPIA5010	30 V
OPIA4N33	
Emitter-Collector VoItage	6 V
OPIA4N35, OPIA2110	7 V
OPIA2210, OPIA6010	-
CPIA5010, OPIA4N33	
Collector Current	50 mA
OPIA4N35, OPIA2210, OPIA6010, OPIA2110	150 mA
Power Dissipation	100 mW
OPIA500	150 mW
OPIA4N35, OPIA2110	200 mW

Electrical Characteristics: (OPIA500B)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input	Forward voltage	VF	$\mathrm{IF}=16 \mathrm{~mA}$	-•	1.7	1.95	V
	Reverse current	IR	$\mathrm{VR}=5 \mathrm{~V}$	-•	-•	10	uA
	Terminal capacitance	Ct	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$	-•	60	250	pF
Output	High level output current (1)	$\mathrm{IOH}(1)$	$\mathrm{IF}=0, \mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{Vo}=5.5 \mathrm{~V}$	-	3	500	nA
	High level output current (2)	$\mathrm{IOH}(2)$	$\mathrm{IF}=0, \mathrm{VCC}=15 \mathrm{~V}, \mathrm{Vo}=15 \mathrm{~V}$	-	-	1.0	UA
	High level output current (3) (*6)	$\mathrm{IOH}(3)$		-	-	50	uA
	High level supply current (1)	ICCH (1)	$\mathrm{IF}=0, \mathrm{VcC}=15 \mathrm{~V}, \mathrm{Vo}=$ Open	-	0.02	1.0	uA
	High level supply current (2) (*6)	ICCH (2)		-	-	2.0	uA
	Low level supply current	ICCL	$\mathrm{IF}=16 \mathrm{~mA}, \mathrm{VcC}=15 \mathrm{~V}, \mathrm{Vo}=$ Open	-	120	-	uA
	Low level supply voltage	VL	$\mathrm{IF}=16 \mathrm{~mA}, \mathrm{VCC}=4.5 \mathrm{~V}, \mathrm{IO}=2.4 \mathrm{~mA}$	-•	-	0.4	V
Transfer characteristics	Current transfer ratio (1)	CTR(1)	$\mathrm{IF}=16 \mathrm{~mA}, \mathrm{VcC}=4.5 \mathrm{~V}, \mathrm{VO}=0.4 \mathrm{~V}$,	19	-•	50	\%
	Current transfer ratio (2) (*6)	CTR(2)	$\mathrm{RL}=1.9 \mathrm{~K}$ ohm	15	-•	-	\%
	Isolation resistance	Riso	$\mathrm{DC}=500 \mathrm{~V}, 40$ to $60 \% \mathrm{RH}$	5×10^{10}	1×10^{17}	-	ohm
	Floating capacitance	Cf	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHZ}$	-•	0.6	1.0	pF
	$\begin{aligned} & \text { "High-->Low" propagation delay } \\ & \text { time } \end{aligned}$	tpHL	$\begin{aligned} & \mathrm{IF}=16 \mathrm{~mA}, \mathrm{VcC}=5 \mathrm{~V}, \\ & \mathrm{RL}=1.9 \mathrm{Kohm} \end{aligned}$	-•	0.2	0.8	us
	"High-->Low" propagation delay time	tplH		-	0.4	0.8	us
	Instantaneous common mode rejection voltage (High level output)	CMH	$\begin{aligned} & \mathrm{IF}=0, \mathrm{VCC}=5 \mathrm{~V}, \\ & \mathrm{VCM}=1.0 \mathrm{KV}(\mathrm{p}-\mathrm{p}), \\ & \mathrm{RL}=1.9 \mathrm{~K} \text { ohm } \end{aligned}$	15	30	-	KV/us
	Instantaneous common mode rejection voltage (High level output)	CML	$\begin{aligned} & \mathrm{IF}=16 \mathrm{~mA}, \mathrm{VCC}=5 \mathrm{~V}, \\ & \mathrm{VCM}=1.0 \mathrm{KV}(\mathrm{p}-\mathrm{p}), \\ & \mathrm{RL}=1.9 \mathrm{Kohm} \end{aligned}$	-15	-30	-	KV/us

Electrical Characteristics (OPIA6XX Series)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS

Input Diode

V_{f}	Forward Voltage OPIA4N35, OPIA5010, OPIA4N33, OPIA604, OPIA2110 OPIA2210	1.0	$\begin{aligned} & 1.2 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.3 \end{aligned}$	V	$\begin{aligned} & I_{F}=20 \mathrm{~mA} \\ & I_{F}=10 \mathrm{~mA} \end{aligned}$
$V_{\text {FM }}$	Peek Forward Voltage OPIA4N35, OPIA5010, OPIA4N33, OPIA604 OPIA2210, OPIA2110	-	-	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	V	$\mathrm{I}_{\mathrm{FM}}=500 \mathrm{~mA}$
I_{r}	Reverse Current OPIA4N35, OPIA5010, OPIA4N33, OPIA604, OPIA2110 OPIA2210	-	-	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\mu \mathrm{A}$	$\begin{aligned} & V_{R}=4 \mathrm{~V} \\ & V_{R}=5 \mathrm{~V} \end{aligned}$
C_{t}	Terminal Capacitance OPIA4N35, OPIA5010, OPIA4N33, OPIA604, OPIA2110 OPIA2210	-	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	-	pf	$\begin{aligned} & \mathrm{V}=0.0 \mathrm{~V}, \mathrm{f}=1 \mathrm{~K} \mathrm{~Hz} \\ & \mathrm{~V}=0.0 \mathrm{~V}, \mathrm{f}=1 \mathrm{M} \mathrm{~Hz} \end{aligned}$

Output Phototransistor-OPIA4N35D, OPIA2210D, OPIA6010D, OPIA2110D

$I_{\text {ceo }}$	Collector dark Current OPIA4N35, OPIA6010, OPIA2110 OPIA2210	-	10	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	nA	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=20 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{C E}=300 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {ceo }}$	Collector-emitter Saturation Voltage OPIA4N35, OPIA6010, OPIA2110 OPIA2210	-	0.1	$\begin{aligned} & 0.3 \\ & 0.4 \end{aligned}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=2.4 \mathrm{~mA} \end{aligned}$
f_{C}	Cutt-Off frequency		80	-	K Hz	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega$
t_{r}	Rise Time OPIA4N35, OPIA6010 OPIA2210 OPIA2110	-	5 2 4	$\begin{gathered} 20 \\ - \\ 20 \end{gathered}$	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$
t_{f}	Fall Time OPIA4N35, OPIA6010 OPIA2210 OPIA2110	-	4 3 3	$\begin{gathered} 20 \\ - \\ 20 \end{gathered}$	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$
Continued on Next Page						

OPIA500B, OPIA4N35, OPIA4N33 OPIA2110, OPIA2210, OPIA5010, OPIA6010 SMD and SOP Packages

Electrical Characteristics (OPIA6XX Series) - Continued from Previous Page

Output PhotoDarlington-OPIA5010D, OPIA4N332D

$\mathrm{I}_{\text {ceo }}$	Collector dark Current OPIA5010 OPIA4N33	-	-	$\begin{aligned} & 1.0 \\ & 0.1 \end{aligned}$	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=200 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {Ceo }}$	Collector-emitter Saturation Voltage OPIA5010 OPIA4N33	-	-	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA} \end{aligned}$
f_{C}	Cutt-Off frequency OPIA5010, OPIA4N33	-	7.0	-	K Hz	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega$
t_{r}	Rise Time OPIA5010 OPIA4N33	-	$\begin{gathered} 60 \\ 5 \end{gathered}$	$\begin{gathered} 300 \\ 40 \end{gathered}$	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$
t_{f}	Fall Time OPIA5010 OPIA4N33	-	$\begin{aligned} & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & 250 \\ & 100 \end{aligned}$	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$

Coupled Characteristics Phototransistor/Photodarlington

CTR	Current Transfer Ratio OPIA4N35 OPIA5010 OPIA4N33 OPIA2210 OPIA6010 OPIA2110	$\begin{gathered} 60 \\ 600 \\ 500 \\ 50 \\ 60 \\ 40 \end{gathered}$	$\begin{gathered} - \\ - \\ 4,000 \\ - \\ - \\ - \end{gathered}$	$\begin{gathered} 600 \\ 9,000 \\ - \\ 600 \\ 600 \\ 400 \end{gathered}$	\%	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}, \mathrm{~V}_{C E}=5.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}, \mathrm{~V}_{C E}=5.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{C E}=10.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{C E}=5.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}, \mathrm{~V}_{C E}=5.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{C E}=5.0 \mathrm{~V} \end{aligned}$
C_{f}	Floating Capacitance	-	0.6	1.0	pF	$\mathrm{V}=0.0 \mathrm{~V}, \mathrm{f}=1 \mathrm{M} \mathrm{Hz}$
$\mathrm{R}_{\text {ISo }}$	Isolation resistance	5×10^{10}	10^{11}	-	ohm	DC500V

OPIA4N35

Fig. 1 Current Transfer Ratio vs. Forward Current

Fig. 2 Collector Power Dissipation vs. Ambient Temperature

OPIA4N35

Fig. 6 Collector Current vs. Collectoremitter Voltage

Collector-emitter Voltage VCE (V)

Fig. 7 Relative Current Transfer Ratio vs. Ambient Temperature

Fig. 8 Collector-emitter Saturation Voltage vs. Ambient Temperature

Fig. 9 Collector-emitter Saturation Voltage vs. Forward Current

Fig. 10 Response Time vs. Load

Fig. 11 Response Time vs. Load

OPIA5010

Fig. 4 Forward Current vs.

Fig. 2 Collector Power Dissipation

Fig. 6 Collector Current vs.

Fig. 5 Forward Current vs.

Fig. 3 Collector Dark Current vs.

Fig. 7 Relative Current Transfer Ratio vs. Ambient Temperature

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

OPIA5010

OPIA4N33

Fig. 1 Forward Current vs. Ambient Temperature

Fig. 3 Peak Forward Current
vs. Duty Ratio

Fig. 5 Current Transfer Ratio vs. Forward Current

Fig. 2 Collector Power Dissipation

Fig. 4 Forward Current vs. Forward Vol tage

Fig. 6 Collector Current vs. Collector-emitter Voltage

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

OPIA4N33

Fig. 11 Collector-emitter Saturation Voltage vs. Forward current

Fig. 7 Relative Current Transfer Ratio vs. Ambient Temperature

Fig. 9 Collector Dark Current vs. Ambient Temperature

Fig. 8 Collector-emitter Saturation Voltage vs. Ambient Temperature

Fig. 10 Response Time vs. Load Resistance

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

OPIA2210
Fig. 1 Current Transfer Ratio
vs. Forward Current

Fig. 2 Collector Power Dissipation vs. Ambient Temperature

Ambient Temperature Ta (C)
Fig. 4 Forward Current vs.
Ambient Temperature

Fig. 3 Collector Dark Current vs. Ambient Temperature

Fig. 5 Forward Current vs.
Forward Voltage

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

OPIA2210

Fig. 6 Collector Current vs. Collector-emitter Voltage

Fig. 8 Collector-emitter Saturation Voltage vs. Ambient Temperature

Ambient Temperature $\mathrm{Ta}\left({ }^{\circ} \mathrm{C}\right)$

Fig. 10 Response Time vs. Load Resistance

Load Resistance RL(Kohm)

Fig. 7 Relative Current Transfer Ratio vs. Ambient Temperature

Fig. 9 Collector-emitter Saturation Voltage vs. Forward Current

Fig. 11 Response Time vs. Load Resistance

OPIA6010

OPIA6010

Fig. 11 Response Time vs. Load Resistance

OPIA2110

Fig. 1
Current Transfer Ratio
vs. Forward Current

Fig. 2 Collector Power Dissipation vs. Ambient Temperature

Fig. 4
Forward Current vs. Ambient Temperature

Fig. 3 Collector Dark Current
vs. Ambient Temperature

Fig. 5 Forward Current vs. Forward Voltage

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

OPIA2110

Fig 6 Collector Current vs.
Fig. 6 Collector-Emitter Voltage

Fig. 8
Collector-Emitter Saturation Voltage vs. Ambient Temperature

Fig. 10 Response Time vs. Load Resistance

Fig. 7
Relative Current Transfer Ratio vs. Ambient Temperature

Fig. 9 Collector-Emitter Saturation Voltage vs. Forward Current

Fig. 11 Response Time vs. Load Resistance

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

OPIA500B, OPIA4N35, OPIA4N33 OPIA2110, OPIA2210, OPIA5010, OPIA6010 SMD and SOP Packages

Quality / Reliability Requirements

Parameter	Failure Criteria	Conditions
HTRB D $\mathrm{I}_{\text {C(OFF) }}$	$\pm 10 \%$	11 samples after 500 Hrs
	0 Fail	@ VCE $=5.0 \mathrm{VDC}, \mathrm{Ta}=70^{\circ} \mathrm{C}$
HTFB D $\mathrm{I}_{\mathrm{C}(\mathrm{ON})}$	$\pm 10 \%$	50 samples after 96 Hrs
	0 Fail	@ Max $\mathrm{P}_{\mathrm{D}}, \mathrm{Ta}=25^{\circ} \mathrm{C}$
MTTF @ 90\% confidence	150,000 Min.	@ $25^{\circ} \mathrm{C}, 25 \mathrm{mADC}$
Moisture Sensitivity Level	MSL 1	per JDEC stnd J-STD-020B
Lead Solderability	0 Fail	per Method 208 of MIL-STD-202.
Glass Transition of body	$125^{\circ} \mathrm{C}$ Min.	DSC test method
Temperature Humidity-Bias	$\pm 20 \%$	$85^{\circ} \mathrm{C}, 85 \% \mathrm{RH}, 500 \mathrm{Hrs}, 80 \%$ min Iceo
Temperature Cycle	$\pm 20 \%$	per Method 1010.7 of MIL-STD-883E
High Temperature Storage	$\pm 20 \%$	$85^{\circ} \mathrm{C}, 500 \mathrm{Hrs}$
Autoclave	0 Fail	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=121^{\circ} \mathrm{C}, \text { Pressure }=15 \mathrm{psi}, \text { Humidity } \\ =100 \%, \text { Time }=96 \mathrm{Hrs} \end{gathered}$

Note: This is to be performed when a change occurs to form, fit or function.

Government and Industry Standard
 Compliance Requirements

European Union's Reduction of Hazardous Substances (RoHS) Directive 2002/95/EC

Label Identification

DESCRIPTION:

Size: $3^{\prime \prime}(7.4 \mathrm{~cm}) \times 2.2^{\prime \prime}(5.5 \mathrm{~cm})$
Lettering shall be black on white background.
Format shall be as:

Notes:

1. The DATE CODE is a 4-digit code for date of manufacture where YY is the last two digits of the year, and WW is week number of manufacture.
2. The LOT I.D. is the manufacturing location lot identification where Y is the year of manufacture, NNNN is a sequential lot identifier, and DDD is the day of the year of manufacture. - or use equivalent label format.

77 electronics OPTEK Technology Carrollton, TX, USA MADE IN TAIWAN
OPTEK P/N __OPIA2110A-TR III \|IIIIIII
\qquad
DATE CODE \qquad IIIIIIIIIIIIIIIII\|II
LOT I.D. \qquad (Y-NNNNDDD) III\|

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Packaging Information:

Optek's Optocoupler Part Numbers		Packaging Quantities	Tube		Inner		Small Carton			Medium Carton			Large Carton		
		Qty	Weight	$\begin{gathered} 52 \times 7 \times 7.5 \\ \mathrm{~cm} \end{gathered}$		$53.5 \times 16 \times 17.5 \mathrm{~cm}$			$\underset{\substack{53.5 \times 30.7 \\ \mathrm{~cm}}}{ } \times 17.5$			$53.5 \times 30.7 \times 25 \mathrm{~cm}$			
		Qty		Weight	Qty	Weight	Gross Weight	Qty	Weight	Gross Weight	Qty	Weight	$\begin{gathered} \text { Gross } \\ \text { Weig } \\ \text { ht } \end{gathered}$		
P/H and SMD	$\begin{aligned} & \text { 4-PIN } \\ & \text { OPIA400D/A, OPIA410D/A - } \\ & \text { OPIA413D/A } \\ & \hline \end{aligned}$		100	44	3,000	1.40	12,000	6.0	6.5	24,000	12.0	12.5	36,000	18.0	18.5
	6-PIN OPIA6XXD/A Series		65	44	1,950	1.50	7,800	6.5	7.0	15,600	12.0	12.5	23,400	18.5	19.0
	8-PIN OPIA8XXD Series and OPID804D		48	44	1,440	1.44	5,760	6.0	6.5	11,520	12.0	12.5	17,290	18.0	18.5
M/F SOP	4-PIN and 5-PIN OPIA401B - OPIA404B, OPIA414B, OPIA500B		100	24	6,000	1.60	24,000	6.5	7.0	48,000	13.0	13.5	72,000	19.5	20.0
SSOP	$\begin{aligned} & \text { 4-PIN } \\ & \text { OPIA405C - OPIA409C } \end{aligned}$		170	--	10,200	--									

P/H = Pin-Hole Packages (Referred as D = Dual-In-Line Package)

SMD $=$ Standard Surface Mount Packages (Referred as $A=6.5 \mathrm{mil}$ SMD)
M/F or SOP = Mini-Flat Packages or Small Outside Packages (Referred as B = 4.40mil SMD w/ 2.54mil LeadSpacing)

SSOP = Shrink SOP Packages (Referred as $\mathrm{C}=3.60 \mathrm{mil}$ SMD with 1.27 mil Lead-Spacing)

Tube Packaging Specifications-SMD (TU):

DIMENSIONS ARE IN: INCHES [MILLIMETERS]
TOLERANCE: ± 0.008 INCHES [± 0.2 MILLIMETERS]

Tube Packaging Specifications- SOP (Mini-flats) (TU):

DIMENSIONS ARE IN: INCHES [MILLIMETERS]
TOLERANCE: ± 0.008 INCHES [± 0.2 MILLIMETERS]

Quantity: 5-pin: 100pcs/tube

Tape and Reel Packaging Specifications-SMD -(TR):
0.157 ± 0.004
[4.0 ± 0.1]

Direction:

DIMENSIONS ARE IN: INCHES [MILLIMETERS]
TOLERANCE: ± 0.008 INCHES
[± 0.2 MILLIMETERS]

Quantity: 6-pin: 1000pcs/Reel
OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Tape and Reel Packaging Specifications-SOP (Mini-Flat) - (TR):

Direction:

DIMENSIONS ARE IN: INCHES [MILLIMETERS]
TOLERANCE: ± 0.008 INCHES [± 0.2 MILLIMETERS]

Reel:

Quantity: 5-pin: 1000pcs/Reel

[^0]: OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

